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d’oltremare, Pad 19, 80125 Napoli, Italyt 

Received 20 January 1983 

Abstract. A Potts model formulation of the statistics of branched polymers or lattice 
animals in a solvent is given. The Migdal-Kadanoff renormalisation group is employed 
to study the critical behaviour or fractal dimension of the branched polymer. Four different 
critical behaviours are found, corresponding to random animal, collapse or B point, 
percolation and compact cluster. The B point behaviour is described by a tricritical point, 
while percolation corresponds to a higher-order critical point, where the effect of the 
solvent on the branched polymer is the same as the screening effect of the other clusters 
in percolation. 

Linear polymers are made of bifunctional monomeric units, which are linked together 
to form long chains. If the monomer functionality is larger than or equal to 3, the 
resultant molecule is a branched polymer (Zimm and Stockmayer 1949). The statistics 
of dilute branched polymers in a good solvent can be suitably described by a single 
cluster made of sites (monomers) connected by nearest-neighbour bonds on a d -  
dimensional lattice (Lubensky and Isaacson 1979; see also Stauffer 1979, Stauffer er 
a1 1982, Stanley et a1 1982). A single isolated cluster is also called a lattice animal 
and corresponds to percolation in the very low density limit where the clusters can 
be treated as isolated. One important quantity is the radius of gyration (roughly the 
linear dimension of the cluster), which for a large number of monomers N,  behaves as 
R -N,” .  This problem has recently received renewed attention for its intriguing 
connection with the Yang-Lee edge singularity in random fields as shown by the work 
of Parisi and Sourlas (1981). It has also been suggested that the lattice animal problem 
may be of relevance to the study of nucleation (Klein 1981, Heermann and Klein 
1983). In this letter, I study the effect of a solvent on a branch polymer. A suitable 
lattice model for such a system is a single cluster made of N,  sites or monomers 
connected by Nb bonds where the sites interact via an effective nearest-neighbour 
interaction W = WSS + WMM - 2wSM, where Wss is the solvent-solvent interaction, 
WM, the monomer-monomer interaction and WMs the monomer-solvent interaction. 
Let us consider the most general case, in which both sites and bonds are independent 
variables and the sites are correlated. The generating function GI for such a problem, 
which I call the site-bond correlated animal problem (SBCA), can be written as 

Gi(h.9 Ab, K )  = A(Ns ,  N b ,  NNN)A%~N, exp(K”N), (1) 
Ns.Nb.”N 
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Figure 1. Example of a lattice animal made of N ,  = 6 sites, Nb = 5 bonds (bold lines), 
NNN = 7 nearest-neighbour pairs and Nt = 12 perimeter bonds (broken lines). NNN - N b  = 
Nu = 2 is the number of NN pairs that are not bonded. 

where A, and A b  are respectively the site and bond activities, K = W/kBT (kB is the 
Boltzmann constant and T the temperature) and N” is the number of pairs of 
nearest-neighbour sites (figure 1). The quantity A(N,,  Nb, N N N )  gives the number of 
distinct lattice animals with N ,  sites, Nb bonds and NNN pairs of NN monomers. 

The special case 

A , =  1, K =0, (2a 1 
gives the random bond animal problem, while the random site animal problem is 
obtained by imposing 

K+m. (26) 
This latter result follows from the relation N” = Nb +Nu where Nu is the number of 
pairs of NN sites that are not bounded (figure l), and from the restriction that 
configurations with Nu # 0 are not allowed for random site animals. 

-K Ab=e , 

It is convenient to write the generating function G I  in the following way: 

where Nt is the number of perimeter bonds (figure l), D(Ns,  Nb, N,)  gives the number 
of distinct lattice animals with N, sites, Nb bonds and Nt perimeter bonds and 

e-Hl = A b[e-“/( 1 - e-”)], e-H2 = A, eKc, p =I---“, ( 5 )  

where c is the coordination number. 
G2 is the generating function for random bond percolation with bond probability 

p ,  and two ghost fields, one coupling to the bonds ( H I )  and the other coupling to the 
sites (H2).  This generating function with two ghost fields was first introduced by Giri 
et a1 (1977) and Wu (1978). In the usual bond percolation problem HI = 0. It is 
crucial to note that in the SBCA generating function defined by (1) one is concerned 
with a single isolated cluster in a soluent. In the percolation problem defined through 
(4) one is concerned with a single cluster in the presence of other clusters, which are 
taken into account by imposing the absence of bonds along the perimeter. The 
equivalence given by (3)-(5) follows easily from the identity N” = cN, - N,  - Nb, 
which can be proven for a regular lattice in d dimensions and can be verified in the 
example of figure 1. 
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In order to study the critical behaviour of the SBCA we make use of the Potts 
model formulation for the generalised percolation problem defined by (4). Consider 
the following s-state Potts model 

where mi = 1 , .  . . , s are the Potts variables and the first two sums are over all pairs of 
NN sites. It has been shown by Giri et af (1977), Wu (1978) and Harris and Lubensky 
(1981a) that Gz(H1, H z , p )  = d In Z/ds/ ,=l,  where Gz is given by (4) and 2 = 

(7) 

In view of (3) - (5) ,  the Hamiltonian (6 )  also gives SBCA with the following relations 
, K = J +L. In particular, from obtained from ( 5 )  and (7): A b  = e - 1, A, = e 

( 2 a )  the random bond animal is obtained for H = 0, L = -J and from ( 2 6 )  the random 
site animal is given for L = -2J, H = CJ - In A, (J + 03). The Potts formulation for the 
special case of a random bond animal has also been proposed by Family and Coniglio 
(1980) and Harris and Lubensky (1981a, b). 

In order to study the critical behaviour of the SBCA, I have applied the Migdal- 
Kadanoff RG to the Hamiltonian (6).  Although I have carried out explicit calculations 
only for dimensionality d = 2, the results are qualitatively true also for d > 2. The 
details of the calculations are given later. There are four fixed points corresponding 
to four different critical behaviours. 

(1) Random animalfixed point. This gives rise to a critical surface in the parameter 
space A,, A b ,  K where the critical behaviour is the same as for the random animal 
problem. 

( 2 )  8 fixed point. This describes a line of tricritical points where the branched 
polymer exhibits a collapse in analogy with the globule-coil collapse in a linear polymer 
in a poor solvent. 

( 3 )  Percolation fixed point. This is the most unstable fixed point, where the 
branched polymer exhibits a further collapse. This higher-order critical point is realised 
for the special values of A,, A b ,  K ,  which corresponds via ( 5 )  to H1 = H z  = 0, p = p c  
(random-bond percolation threshold). Therefore for such values of the parameters, 
the fractal dimensionality of the single isolated cluster in the animal problem is the 
same as that of the percolating cluster in the percolation problem. Physically this 
means that the effect of the solvent on the single isolated cluster in the animal problem 
is equivalent to the screening effect of all the other clusters in the percolation problem, 
as clearly shown from (3) - (5) .  This percolation behaviour is a new prediction for 
dilute branched polymers in a solvent. There is no analogue for dilute linear polymers. 

(4) Compact fixed point. This corresponds to a further shrinking of the branched 
polymer with fractal dimensionality equal to d .  

Each one of the above four critical behaviours is characterised by a critical exponent 
v, ( i  = 1 ,2 ,3 ,4 )  related to the radius of gyration by R - N,”l. Using numerical data 
and the Flory theory, we have V I  < v z  < v 3  < v4 = l/d. The branched polymer always 
shrinks as additional attractive interactions are introduced. More specifically, the 
Flory theory (Isaacson and Lubensky 1980, de Gennes 1980, Daoud and Joanny 
1981) gives V I  = 5 / [ 2 ( d  + 2)1, v z  = 7/(4d +4),  v 3  = 2 / ( d  + 2) .  Although it may be 
difficult to measure precisely these critical exponents experimentally, nevertheless it 
should be possible to observe crossover from one regime to the other, using the same 

exp(-2f/kBT) is the partition function for the Potts model (6)  and 

Hz = H, = (eJ - l)/(eJ+L - I), = 1 -e-(J+L) 

J - H - c ( J + L )  
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techniques as for a dilute linear polymer system (Swislow et al 1980) or using computer 
'experiments' (Redner 1979). 

Harris and Lubensky (1981b), in their study of the animal problem in which they 
used the E expansion, also found the same structure of fixed points. But due to the 
complexity of the field theoretical formulation, the physical interpretation of the 
percolation fixed point was not clear. In a different approach Family and Coniglio 
(1980) studied the lattice animal problem in the presence of other clusters. For a 
special value of the parameters they also found a percolation fixed point. This is 
physically different from the case which I have introduced which applies to a single 
isolated cluster in the presence of a soluent. 

In the generating function (1) it is possible to express the number of sites N,  in 
terms of number of independent loops NL and number of bonds Nb via Euler's law: 
N,  = 1 +Nb-NL.  This allows us to study the SBCA as a function of the chemical 
potential of loops instead of A,. Since the random animal behaviour is characterised 
by only one relevant eigenvalue, the changing of the number of loops does not change 
the critical exponent, in agreement with the E -expansion result (Lubensky and Isaacson 
1979). This is not true for the percolation point, which is characterised by three 
eigenvalues. Therefore any change of the parameters including the chemical potential 
for loops will always move away from the percolation fixed point under successive 
renormalisation. 

The SBCA problem is analogous with another model, one that was originally 
developed to study solvent effects in the sol-gel transition (Coniglio et a1 1979, 1982); 
subsequently it provided a satisfactory definition of a droplet that was used to describe 
the phase transition in the Ising model (Coniglio and Klein (1980), see also the recent 
review by KertCsz et a1 (1983) and references therein). This is the site-bond correlated 
percolation problem where the clusters are made of sites connected by bonds. The 
sites are correlated according to the lattice-gas Hamiltonian while the bonds are 
random. The critical behaviour of the clusters is generally the same as in random 
percolation, except for a special value of the parameters where crossover to Ising 
critical behaviour is found. 

The site-bond correlated percolation is also obtained from the Potts model (6) in 
the limit s + 2 instead of the s + 1 limit as for the SBCA. This is the reason why for 
the special values of the parameters corresponding to H = L = 0 in one problem one 
finds Ising behaviour (s + 2) while in the other case one finds percolation behaviour 
(s + 1). It is also interesting to note that in view of the mapping of the Potts Hamiltonian 
(1) into the lattice-gas Potts model (Coniglio and Klein 1980), the critical behaviour 
of the SBCA problem as well as the site-bond correlated percolation problem has the 
same general structure found in the lattice-gas Potts model by Nienhuis et a1 (1979), 
namely a critical s-Potts, a tricritical s-Potts and an (s + 1)-Potts higher-order critical 
point. 

The Migdal-Kadanoff RG applied to Hamiltonian (6) ,  where the one-site interaction 
has been treated on the same footing as the two-site interaction +amil), 
leads to the following recursion relations in the limit s + 1: 

x '  = (f2 + i2 - 1)/(2x' + i2 - 2), 
2' = i ( 2 G  +x' - 1)/(2x' + i2 - 2), 

w ' = x ' 2 G 2 / ( x ' 2 + i 2 -  l), 

where x' = e~p[b'~-' 'J], G = e~p[b'~-l ' (L + 2 H / c ) ] ,  i = e~p[b'~-' 'H/c] and X '  = 
exp(J'), w' = exp[L'+ (2/c)H'], z' = exp(H'/c), b is the scaling length factor. The 
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fixed point structure does not depend on d and has been analysed before. In particular, 
for b = 2 and d = 2 I find the following non-trivial fixed points: 

(1) random animal fixed point: x *  = CO, z* = 2, w *  = 0, y ;' = v1 = 1;  
(2) 8 fixed point: x* = 11.77, z*  = 6.20, w *  = 1.03, y;' = v 2 =  0.51 and another 

(3) percolation fixed point: x* = 1.61, w *  = 1, z* = 1 with y;' = v 3  = 0.53 with two 

(4) compact fixed point: w = 1, z = 1, x = 00 with y i '  = 0.5. 

relevant eigenvalue exponent y i '  = 1.41; 

more relevant eigenvalue exponents 9;' = 1.63 and f;' = 1.46; 

Note that in the Migdal-Kadanoff approximation v 2  < v 3  as opposed to the general 
trend found from FIory's theory. 

In conclusion, I have introduced a model for a branched polymer in a solvent. 
Besides the three critical behaviours expected in analogy with a linear chain in a poor 
solvent (random, 8- collapse, compact), a percolation critical behaviour is found for 
special values of the parameters. These behaviours could be studied experimentally 
using, for example, the same technique employed by Swislow et a2 (1980) in the study 
of dilute linear polymers in a poor solvent and by computer experiments. 

I would like to thank S Redner and H E Stanley for carefully reading the manuscript 
and offering suggestions. This work has been supported in part by CNR, NSF, ONR 
and ARO. 
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